882 research outputs found

    Initial/boundary-value problems of tumor growth within a host tissue

    Full text link
    This paper concerns multiphase models of tumor growth in interaction with a surrounding tissue, taking into account also the interplay with diffusible nutrients feeding the cells. Models specialize in nonlinear systems of possibly degenerate parabolic equations, which include phenomenological terms related to specific cell functions. The paper discusses general modeling guidelines for such terms, as well as for initial and boundary conditions, aiming at both biological consistency and mathematical robustness of the resulting problems. Particularly, it addresses some qualitative properties such as a priori nonnegativity, boundedness, and uniqueness of the solutions. Existence of the solutions is studied in the one-dimensional time-independent case.Comment: 30 pages, 5 figure

    Vitamin E in Viral Inactivated Vaccines

    Get PDF
    Abstract This research aimed at verifying whether vitamin E added to inactivated and emulsified vaccines enhances the immune response to viral antigens in chicken. Three hundred and twenty broilers (males and females) and 16 types of vaccines, varying in viral antigen [Newcastle disease virus, egg drop syndrome 1976 virus (EDS76V), and infectious bursal disease virus] and vitamin E amount (replacing 10, 20, and 30% of mineral oil) were used. Results show that vaccines with vitamin E, especially when it replaces 20 or 30% of mineral oil, induces a more rapid and higher antibody response than control vaccines. An adjuvant effect of vitamin E was also present in viral vaccine lacking bacterial antigens. Apart from vitamin E content, the Newcastle disease virus and infectious bursal disease virus monovalent vaccines induced higher titers of specific circulating antibodies in birds than did trivalent vaccines

    The Relevance of Academic Libraries in the Twenty-First Century

    Get PDF
    The biggest challenge facing the library profession in the twenty-first century is staying relevant to its users. It is often stated that the Internet and Google have changed librarianship. This challenge, while significant, does not mean that libraries will go away. It is causing us to re-evaluate what we do, how we do it, and what role libraries have in the academy and in our culture at large. This column addresses some of the ways in which academic libraries can stay relevant throughout the twenty-first century

    Determining noise and vibration exposure in conifer cross-cutting operations by using Li-Ion batteries and electric chainsaws

    Get PDF
    In many activities, chainsaw users are exposed to the risk of injuries and several other hazard factors that may cause health problems. In fact, environmental and working conditions when using chainsaws result in workers' exposure to hazards such as noise, vibration, exhaust gases, and wood dust. Repeated or continuous exposure to these unfavourable conditions can lead to occupational diseases that become apparent after a certain period of time has elapsed. Since the use of electric tools is increasing in forestry, the present research aims to evaluate the noise and vibration exposure caused by four models of electric chainsaws (Stihl MSA160T, Stihl MSA200C Li-Ion battery powered and Stihl MSE180C, Stihl MSE220C wired) during cross-cutting. Values measured on the Stihl MSA160T chainsaw (Li-Ion battery) showed similar vibration levels on both right and left handles (0.9-1.0 m s-2, respectively) and so did the other battery-powered chainsaw, the Stihl MSA200C (2.2-2.3 m s-2 for right and left handles, respectively). Results showed a range of noise included between 81 and 90 dB(A) for the analysed chainsaws. In conclusion, the vibrations and noise were lower for the battery chainsaws than the wired ones, but, in general, all the values were lower than those measured in previous studies of endothermic chainsaws

    Duodenal-Jejunal Bypass and Jejunectomy Improve Insulin Sensitivity in Goto-Kakizaki Diabetic Rats Without Changes in Incretins or Insulin Secretion

    Get PDF
    Gastric bypass surgery can dramatically improve type 2 diabetes. It has been hypothesized that by excluding duodenum and jejunum from nutrient transit, this procedure may reduce putative signals from the proximal intestine that negatively influence insulin sensitivity ( S I ). To test this hypothesis, resection or bypass of different intestinal segments were performed in diabetic Goto-Kakizaki and Wistar rats. Rats were randomly assigned to five groups: duodenal-jejunal bypass (DJB), jejunal resection (jejunectomy), ileal resection (ileectomy), pair-fed sham-operated, and nonoperated controls. Oral glucose tolerance test was performed within 2 weeks after surgery. Baseline and poststimulation levels of glucose, insulin, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) were measured. Minimal model analysis was used to assess S I . S I improved after DJB ( S I = 1.14 ± 0.32 × 10 −4 min −1 ⋅ pM −1 ) and jejunectomy ( S I = 0.80 ± 0.14 × 10 −4 min −1 ⋅ pM −1 ), but not after ileectomy or sham operation/pair feeding in diabetic rats. Both DJB and jejunal resection normalized S I in diabetic rats as shown by S I levels equivalent to those of Wistar rats ( S I = 1.01 ± 0.06 × 10 −4 min −1 ⋅ pM −1 ; P = NS). Glucose effectiveness did not change after operations in any group. While ileectomy increased plasma GIP levels, no changes in GIP or GLP-1 were observed after DJB and jejunectomy. These findings support the hypothesis that anatomic alterations of the proximal small bowel may reduce factors associated with negative influence on S I , therefore contributing to the control of diabetes after gastric bypass surgery

    Mechanotransduction in human and mouse beta cell lines: reliable models to characterize novel signaling pathways controlling beta cell fate

    Get PDF
    Background and aims: Attempts to influence \u3b2-cell differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies are hampered by the fact that profound details of mechanosensing/transduction complexity remain elusive. We recently demonstrated that human islets of Langerhans sense the ECM nanotopography and activate a mechanotransductive pathway, which is essential for preserving long-term \u3b2-cell differentiation and function in vitro. However, human islets of Langerhans are extremely heterogeneous and their availability for research purpose is limited. Therefore, aim of the proposed research was to investigate whether mouse and human \u3b2-cell lines might sense changes innthe ECM topography and might be used as a simplified model to dissect the molecular pathways involved in mechanotransduction. Materials and methods: We used supersonic cluster beam deposition to fabricate nanostructured substrates characterized by a quantitatively controllable ECM-like nanoroughness. Mouse \u3b2TC3 and human 1.1B4 cells were seeded on these substrates and after five days in culture, the activation of the mechanotransductive pathway was verified by means of morphological (super-resolution fluorescence microscopy), functional and proteomic techniques. Results: Quantitative immunofluorescence studies demonstrated that the cell-nanotopography interaction affects the focal adhesion structures (smaller vinculin clusters), the organization of the actin cytoskeleton (shorter actin fiber) and the nuclear architecture. Functional studies revealed that nanostructured surfaces improve the \u3b2-cell mitochondrial activity and increase the glucose-stimulated Ca2+currents and insulin release. Label-free shotgun proteomics broadly confirmed the morphological and functional studies and showed the upregulation of a number of mechanosensors and transcription factors involved in \u3b2-cell differentiation in cells grown on nanostructured substrates compared to those grown on flat standard control surfaces. Conclusion: Our data reveal that mouse and human \u3b2-cell lines sense changes in extracellular mechanical forces and activate a mechanotransductive pathway. The findings from this study will be useful to clarify the link between mechanotransduction and cell fate and to successfully engineer scaffolds in order to have functional beta cells

    Electrochemical C(sp3)-H functionalization of ethers via hydrogen-atom transfer by means of cathodic reduction

    Get PDF
    : The chemo- and stereoselective electrochemical allylation/alkylation of ethers is presented via a C(sp3)-H activation event. The electrosynthetic protocol enables the realization of a large library of functionalized ethers (35 examples) in high yields (up to 84%) via cathodic activation of a new type of redox-active carbonate (RAC), capable of triggering HAT (Hydrogen-Atom-Transfer) events through the generation of electrophilic oxy radicals. The process displayed high functional group tolerance and mild reaction conditions. A mechanistic elucidation via voltammetric analysis completes the study

    Vitamin E as Adjuvant in Emulsified Vaccine for Chicks

    Get PDF
    Abstract Mineral oil was partially replaced with D, L-α-tocopheryl acetate (vitamin E) in bacterial and viral inactivated emulsified vaccines. Vitamin E increased the immune response to the viral antigen (Newcastle disease virus) used but not to the bacterial antigen (Escherichia coli) when its presence in the oil phase did not exceed 30%. Inoculated vitamin E may have enhanced the immune response by interacting with the immune-competent cells involved in the inflammatory reaction that followed inoculation of emulsified vaccines

    Prior Exercise Reduces Fast-Start Duration and End-Spurt Magnitude during Cycling Time-Trial

    Get PDF
    We examined the pacing strategy and the magnitude of the end spurt during a 200-kJ cycling time trial performed 12–14 h after an exercise protocol designed to reduce muscle glycogen content. 9 physically-active men performed 5 familiarization sessions and 2 experimental 200-kJ time trials in either a control condition (CON) or after an exercise protocol performed the previous evening that was designed to induce muscle glycogen depletion (EP). Mean total time was faster and power output was higher in the CON than in the EP (P<0.01). A fast-start was maintained until the 50-kJ section in CON, but only the 25-kJ section for EP (P<0.05). The power outputs during the 50-, 150- and 200-kJ sections, and the magnitude of the end-spurt, were significantly higher for the CON than for the EP condition (P<0.05). There was no significant difference in the rating of perceived exertion (overall feeling and feeling in legs) between conditions. In conclusion, a protocol designed to decrease muscle glycogen stores reduced the duration of the fast-start and the magnitude of the end spurt during a 200-kJ cycling time trial, impairing the overall performance

    Merging C-C σ-bond activation of cyclobutanones with CO2 fixation via Ni-catalysis

    Get PDF
    A carboxylative Ni-catalyzed tandem C-C σ-bond activation of cyclobutanones followed by CO2-electrophilic trapping is documented as a direct route to synthetically valuable 3-indanone-1-acetic acids. The protocol shows an adequate functional group tolerance and useful chemical outcomes (yield up to 76%) when AlCl3 is adopted as an additive. Manipulations of the targeted cyclic scaffolds and a mechanistic proposal based on experimental evidence complete the investigation
    • 

    corecore